

MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL - 624101

DEPARTMENT OF PHYSICS

M.Sc. PHYSICS

Curriculum Framework, Syllabus and Regulations (Based on TANSCHE Syllabus under Choice Based Credit Systems – CBCS)

(For the candidates to be admitted from the Academic Year 2023-2

TABLE OF CONTENTS

S.No.	Contents
1.	About the Department
2.	About the Programme
3.	Programme Educational Objectives
4.	Programme Outcomes
5.	Programme Specific Outcomes
6.	Eligibility
7.	General Guidelines for PG Programme
8.	Evaluation Pattern
	8.1. Internal Assessment
	8.2. Methods of Assessment
	8.3. Written Examination Question Pattern
	8.4. Methods of Assessment
8.	Project
	8.1. Project Report
	8.2. Project Evaluation
10.	Conversion of Marks to Grade Points and Letter Grade
	(Performance in a Course/Paper)
11.	Attendance
12.	Maternity Leave
13.	Any Other Information
14.	Faculty Course File Structure
15.	Common Template for PG Programme as per TANSCHE
16.	Templates for Semesters
17.	Syllabus

MOTHER TERESA WOMEN'S UNIVERSITY

KODAIKANAL DEPARTMENT OF PHYSICS CHOICE BASED CREDIT SYSTEM (CBCS) (2023 – 2024 Onwards) M.Sc. PHYSICS

1. About the Department

Department of Physics was established in 2002 with M.Sc. Physics. It acts as instrument for spreading Higher Education in Physics to remote rural areas of Kodaikanal. M.Phil. and Ph.D. programme were introduced in the year 2005.

2. About the Programme-M.Sc. Physics

M.Sc Physics is a two-year Postgraduate Programme that provides the learners with the theoretical and practical knowledge of Physics and its allied subjects. The Programme, with its strong emphasis on skill development, enriches the learners' research, technological, and employability skills and thereby ensures their broad-based futuristic developments with sound knowledge and ethical values.

3. Programme Educational Objectives (PEOs)

PEO1: To prepare the students to excel in Physics and to succeed in Industry /technical/ research based profession.

PEO2: To train students with depth and breadth of knowledge in Physics so as to comprehend, analyze, design and create solutions for real-life problems.

PEO3: To provide strong mathematical and technical foundation neede to solve real world problems and also to pursue higher studies and research in Physics.

PEO4: To inculcate appropriate professional and ethical attitude in students in order to work towards a broader social context.

PEO5: To develop students with leadership qualities and continuous learning ability on the technology needed for a successful profession.

4. Programme Outcomes (POs)

PO1: To acquire knowledge about the nature, concepts, methods, techniques and objectives in the core subjects

PO2: To cultivate scientific approach and culture of research aptitude.

PO3: To enhance the problem-solving skills of the students so that they will be able to face the national level competitive exams like NET, GATE and SET etc.

PO4: To understand the links of Physics with other disciplines and also to the societal issues.

PO5: To train the students to develop their employability skills and entrepreneurial skills.

5. Program-Specific Outcomes (PSO)

PSO1: To make the students in mastering in the field of Materials Science and Astrophysics and prepare them for research

PSO2: Understand and apply inter-disciplinary concepts of Physics for understanding and describing the natural phenomenon

PSO3: Provide basic foundations with a sound knowledge of underlying principles along with recent developments

PSO4: Enable students to work with state-of-the art technologies

PSO5: Ability to plan and execute their own innovative ideas in the form of projects, product design and development.

PSO6: Know about the importance of research methodology in science by acquiring

knowledge in the form of project, summer internship and field visit/industrial visit.

6. Eligibility

B.Sc. Physics, Applied Physics, with Mathematics as allied subject at the UG level

7. General Guidelines for PG Programme

i. Duration: The Programme shall extend through a period of 4 consecutive semesters and the duration of a semester shall normally be 90 days or 450 hours. Examinations shall be conducted at the end of each semester for the respective subjects.

ii. Medium of Instruction: English

8. Evaluation (25+75): Evaluation of the candidates shall be through Internal Assessment and End Semester Examination.

8.1. Evaluation Pattern

	EVALUATION PATTERN	Maximum Marks	Minimum Marks
		(Theory & Practical)	(Theory & Practical)
Internal	Continuous Internal Assessment Test	25 Marks	
Evaluation	Assignments / Snap Test / Quiz		13 Marks
	Seminars		
	Attendance and Class Participation		
External	End Semester Examination	75 Marks	38 Marks
Evaluation			
	Total	100 Marks	50 Marks

Minimum credits required to pass: 91

8.2. Internal Assessment-CIA

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no improvement for CIA of both theory and laboratory, and, also for University End Semester Examination.

8.3. End Semester Examination (Theory): Max. Marks: 75 Time: 3 hrs.

8.4.Written Examination Question Paper Pattern: Theory Paper (Bloom's Taxonomy based)

Intended Learning Skills	Maximum 75 Marks Passing Minimum: 50% Duration : Three Hours
Mamage Dagell / Example /	Part -A (10x 2 = 20 Marks)
Memory Recall / Example/	
Counter Example / Knowledge	Answer ALL questions
about the Concepts/ Understanding	Each Question carries 2mark
	Two questions from each UNIT
	Question 1 to Question 10
Descriptions/ Application	Part – B (5 x 5 = 25 Marks)
(problems)	Answer ALL questions
	Each questions carries 5 Marks
	Either-or Type
	Both parts of each question from the same UNIT
	Question 11(a) or 11(b)
	То
	Question 15(a) or 15(b)
Analysis /Synthesis / Evaluation	Part-C (3x 10 = 30 Marks)
	Answer any THREE questions
	Each question carries 10 Marks
	There shall be FIVE questions covering all thefive units
	Question 16 to Question 20

(Common for PG Programmes)

Each question should carry the course outcome and cognitivelevel For instance,

9.1.I.1. [CO1 : K2] Question xxxx

9.1.I.2. [CO3 : K1] Question xxxx

8.5. Methods of Assessment

Methods of	of Assessment
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions
Understand/ Comprehend K2)	MCQ, True/False, Short essays, Concept explanations, Short summary oroverview
Application (K3)	Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain
Analyze (K4)	Problem-solving questions, Finish a procedure in many steps, Differentiate between various ideas, Map knowledge
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pros and cons
Create (K6)	Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations

9. Project

9.2. Project Report

A student should select a topic for the Project Work at the end of the third semester itself and submit the Project Report at the end of the fourth semester. The Project Report shall not exceed 40 typed pages in Times New Roman font with 1.5linespace.

9.3. **Project Evaluation**

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination. The Project Workcarries100 marks (Internal:25 Marks; External(Viva): 75 Marks).

10. Conversion of Marks to Grade Points and Letter Grade (Performance in a course / Paper)

Range of Marks	Grade Points	Letter Grade	Description
90 - 100	9.0 - 10.0	0	Outstanding
80-89	8.0 - 8.9	D+	Excellent
75-79	7.5 - 7.9	D	Distinction
70-74	7.0 - 7.4	A+	Very Good
60-69	6.0 - 6.9	А	Good
50-59	5.0 - 5.9	В	Average
00-49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

11. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students with 71% to 74% of attendance must apply for condonation in the Prescribed Form with the prescribed fee. Students with 65% to 70% of attendance must apply for condonation in the Prescribed Form with the prescribed fee along with the Medical Certificate. Students with attendance less than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, Principal and the Registrar of the University.

12. Maternity Leave

The student who avails maternity leave may be considered to appear for the examination with the approval of Staff i/c, Head of the Department, Controller of Examination and the Registrar.

13. Any Other Information

In addition to the above-mentioned regulations, any other common regulations pertaining to the PG Programmes are also applicable to this Programme.

14. Faculty Course File Structure-Contents

a.	Academic Schedule	q.	Laboratory Experiments related
			to the Courses
b.	Students Name List	r.	Internal Question Paper
c.	Time Table	s.	External Question Paper
d.	Syllabus	t.	Sample Home Assignment
			Answer Sheets
e.	Lesson Plan	u.	Three best, three middle level and
			three average Answersheets
f.	Staff Workload	v.	Result Analysis (CO wise and
			whole class)
g.	Course Design(content, Course Outcomes	w.	Question Bank for Higher
	(COs), Delivery method, mapping of COs with		studies Preparation
	Programme Outcomes(POs), Assessment Pattern		(GATE/Placement)
	interms of Revised Bloom's Taxonomy).		
h.	Sample CO Assessment Tools	х.	List of mentees and their
			academic achievements
i.	Faculty Course AssessmentReport(FCAR)		
j.	Course Evaluation Sheet		
k.	Teaching Materials (PPT, OHP etc)		
l.	Lecture Notes		
m.	Home Assignment Questions		
n.	Tutorial Sheets		
0.	Remedial Class Record, if any		
р.	Projects related to the Course		

15. Common Template for P.G. Programmes as per TANSCHE-2023-24

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credit	Hours
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurship) 20% Theory	3	4
									80% Practical		
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 NME I	2	4	3.6 NME II	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
					Total	Credit Points - 91		•			

16. Templates for Semesters

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

S.No.	Course	List of Credits Hours		CIA	ESE	Total		
	Code	Courses		L	Р			
1.	P23PHT11	Core – I	5	7	-	25	75	100
2.	P23PHT12	Core – II	5	7	-	25	75	100
3.	P23PHP11	Core – III	4	6	-	25	75	100
4.	P23PHE1A / P23PHE1B	Elective – I (Discipline Centric)	3	5	-	25	75	100
5.	P23WSG11	Generic Course-I	3	5	-	25	75	100
		Total	20	30		-	I	500

First Year - Semester I

Semester II

S.No.	Course	List of Courses	Credits	Hours		Hours		CIA	ESE	Total
	Code			L	Р					
6.	P23PHT23	Core – IV	5	6	-	25	75	100		
7.	P23PHT24	Core – V	5	6	-	25	75	100		
8.	P23PHP22	Core – VI	4	6	-	25	75	100		
9.	P23PHE2A	Elective – II (Discipline	3	4	-	25	75	100		
	/ P23PHE2B	Centric)								
10.	P23CSG22	Generic Course-II	3	4	-	25	75	100		
11.	P23PHS21	NME - Skill Enhancement Course-1	2	4	-	25	75	100		
		Total	22	30)	-	-	600		

SYLLABUS FRAMEWORK FOR PG PROGRAMMES

(As per TANSCHE – From 2023-24)

			S.		SS.		AX RKS
COURSE COMPONENTS	Course Code	NAME OF THE COURSE	INST. HRS.	CREDITS	EXAM HRS	CIA	EXT.
Core-I	P23PHT11	Paper 1- Mathematical Physics	7	5	3	25	75
Core II	P23PHT12	Paper 2 - Classical Mechanics and Relativity	7	5	3	25	75
Core III	P23PHP11	Practical I	6	4	3	25	75
Elective- I	P23PHE1A / P23PHE1B	Discipline Specific Choose any one from the list I Energy Physics/Materials Science	5	3	3	25	75
Genreric Course-I	P23WSG11	Generic Course-I – Women Empowerment	5	3	3	25	75
		Total	30	20			

First Year -SEMESTER I

SEMESTER II

COURSE	Course			STI		MAX IARKS
COMPONEN TS	Code	NAME OF THE COURSE	INST. HRS.	CREDITS	CIA	EXT.
Core - IV	P23PHT23	Paper 3– Linear and Digital ICs and Applications	6	5	25	75
Core -V	P23PHT24	Paper 4 - Quantum Mechanics –I	6	5	25	75
Core VI	P23PHP22	Practical – II – Electronics	6	4	25	75
Elective- II	P23PHE2 A / P23PHE2 B	Discipline Centric Elective Choose any one from the list II Bio Physics / General Relativity and Cosmology	4	3	25	75
Generic Course-II	P23CSG22	Generic Course -Cyber Security	4	3	25	75
NME-SEC-I	P23PHS21	NME-Skill Enhancement Course – I (SEC-I) - Structural Analysis by XRD	4	2	25	75
		Total	30	22		

Mother Teresa Women's University, Kodaikanal – 624 101

17.

First semester

Core –I Paper-1 - MATHEMATICAL PHYSICS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHT11	MATHEMATICAL PHYSICS	Core	7	-	-	5	7	75

Pre-Requisites					
Matrices, vectors, differentiation, integration, differential equations					
Learning Objectives					
> To equip students with the mathematical techniques needed for understanding theoretical					
treatment in different courses taught in their program					

> To extend their manipulative skills to apply mathematical techniques in their fields

> To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
	Basic concepts - Definitions- examples of vector space - Linear independence -
UNIT I:	Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –
	linear operators – Dual space- ket and bra notation – orthogonal basis – change
LINEAR	of basis - Isomorphism of vector space - projection operator -Eigen values and
VECTOR SPACE	Eigen functions – Direct sum and invariant subspace – orthogonal
	transformations and rotation
	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex
	Variable- Differentiability -Analytic functions- Harmonic Functions- Complex
UNIT II:	Integration- Contour Integration, Cauchy – Riemann conditions – Singular
UNIT II.	points - Cauchy's Integral Theorem and integral Formula -Taylor's Series -
COMPLEX	Laurent's Expansion- Zeros and poles - Residue theorem and its Application:
ANALYSIS	Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates,
AIALISIS	coaxial cylinders and an annular region (2) Heat problems - Parallel plates and
	coaxial cylinders
	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix
UNIT III:	- Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -
	Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen
MATRICES	values and Eigen vectors - Cayley–Hamilton theorem – Diagonalization

	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine
ROUKIER	transforms - Convolution theorem. Application: Diffusion equation: Flow of
TRANSFORMS	heat in an infinite and in a semi-infinite medium - Wave equation: Vibration of
&	an infinite string and of a semi-infinite string.
	Laplace transform and its inverse - Transforms of derivatives and integrals –
TRANSFORMS	Differentiation and integration of transforms - Dirac delta functions -
	Application - Laplace equation: Potential problem in a semi-infinite strip

	Second order differential equation- Sturm-Liouville's theory - Series solution						
	with simple examples - Hermite polynomials - Generating function -						
UNIT V:	Orthogonality properties - Recurrence relations - Legendre polynomials -						
	Generating function - Rodrigue formula - Orthogonality properties - Dirac						
DIFFERENTIAL	delta function- One dimensional Green's function and Reciprocity theorem -						
EQUATIONS	Sturm-Liouville's type equation in one dimension & their Green's function.						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,						
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill						
COMPONENTS	Enhancement, Social Accountability and Patriotism						
	1. George Arfken and Hans J Weber, 2012, Mathematical Methods for						
	Physicists – A Comprehensive Guide (7th edition), Academic press.						
	2. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2 nd edition), New						
	Age, New Delhi						
	3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition						
TEXT BOOKS	(Paperback), New Age International Pvt. Ltd., India						
	4. B. D. Gupta, 2009, <i>Mathematical Physics</i> (4 th edition),						
	Vikas Publishing House, New Delhi.						
	5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics,						
	Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.						
	1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley						
	Eastern, New Delhi,						
	2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering						
	Mathematics, 3rd Ed. Narosa, New Delhi. 3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill,						
REFERENCE	New York 3. E. Butkov, 1968, Mathematical Physics Addison -						
BOOKS	Wesley, Reading, Massachusetts.						
DOORD	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition,						
	Affiliated East West, New Delhi.						
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering						
	Mathematics, 6 th Edition, International Edition, McGraw-Hill, New						
	York						
L							

WEB SOURCES	1. www.khanacademy.org
	2. <u>https://youtu.be/LZnRIOA1_2I</u>
	3. http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
	4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R</u>
	<u>YTEU27vS_SIED56gNjVJGO2qaZ</u>
	5. https://archive.nptel.ac.in/courses/115/106/115106086/

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	K2, K3
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K4, K5
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K2, K5
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Strong (3), Medium (2) and Low (1)

Core –II I YEAR - FIRST SEMESTER Paper-2 - CLASSICAL MECHANICS AND RELATIVITY

Inst. Hours Category Credits Marks Subject L Т Р Subject Name Code CLASSICAL MECHANICS AND P23PHT12 Core 7 5 7 75 RELATIVITY

Pre-Requisites

Fundamentals of mechanics, Foundation in mathematical methods.

- Learning Objectives
- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details						
UNIT I: PRINCIPLES OF CLASSICAL MECHANICSMechanics of a single particle – mechanics of a system of particles conservation laws for a system of particles – constraints – holonom & non-holonomic constraints – generalized coordinates configuration space – transformation equations – principle of virtu work.UNIT II: PRINCIPLES OF CLASSICAL MECHANICSMechanics of a single particle – mechanics of a system of particles – constraints – holonom constraints – generalized coordinates configuration space – transformation equations – principle of virtu work.							
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.						
UNIT III: HAMILTONIAN EQUATIONS	Hamilton's Principle – Hamiltonian function, Hamilton's Equation from variational principle – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.						
UNIT IV: SMALL OSCILLATIONS	Normal frequencies of vibration, Eigen value equation, Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.						
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations						

UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial nteractions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism									
 H. Goldstein, 2002, Classical Mechanics, 3rd Edi Pearson Edu. J. C. Upadhyaya, Classical Mechanics, Himalaya Publis Co. New Delhi. R. Resnick, 1968, Introduction to Special Theory Relativity, Wiley Eastern, New Delhi. R. G. Takwala and P.S. Puranik, Introduction to Class Mechanics –Tata – McGraw Hill, New Delhi, 1980. N. C. Rana and P.S. Joag, Classical Mechanics – McGraw Hill, 2001 										
REFERENCE BOOKS	 K. R. Symon, 1971, <i>Mechanics</i>, Addison Wesley, London. S. N. Biswas, 1999, <i>Classical Mechanics</i>, Books & Allied, Kolkata. Gupta and Kumar, <i>Classical Mechanics</i>, Kedar Nath. T.W.B. Kibble, <i>Classical Mechanics</i>, ELBS. Greenwood, <i>Classical Dynamics</i>, PHI, New Delhi. 									
WEB SOURCES	 <u>http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Gold</u> <u>stein_Classical_Mechanics_optimized.pdf</u> <u>https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-</u> <u>2014-editionpdf-pdf-free.html</u> <u>https://nptel.ac.in/courses/122/106/122106027/</u> <u>https://ocw.mit.edu/courses/physics/8-09-classical-</u> <u>mechanics-iii-fall-2014/lecture-notes/</u> <u>https://www.britannica.com/science/relativistic-mechanics</u> 									

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Understand the fundamentals of classical mechanics.	K2
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve	K3
	the equations of motion of physical systems.	КJ
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve	K3,
	the equations of motion of physical systems.	K5
CO4	Analyze the small oscillations in systems and determine their normal	K4,
	modes of oscillations.	K5
CO5	Understand and apply the principles of relativistic kinematics to the	K2,
	mechanical systems.	K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	•

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

Strong -3, Medium -2, Low -1

Core III - PR	I YEAR - FIRST SEMESTER							
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHP11	PRACTICAL I - General Experiments	Core	_	_	6	4	6	75

Pre-Requisites
Knowledge and hands on experience of basic general experiments of Physics
Learning Objectives
> To understand the concept of mechanical behavior of materials and calculation of same using
appropriate equations.

> To calculate the thermodynamic quantities and physical properties of materials.

> To analyze the optical and electrical properties of materials.

Course Details

General Experiments (Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.

20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.

- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
TEXT BOOKS	3. Electronic Laboratory Primer a design approach, S. Poornachandra,
IEAI DUURS	B. Sasikala, Wheeler Publishing, New Delhi.
	4. Electronic lab manual Vol I, K Anavas, Rajath Publishing.
	5. Electronic lab manual Vol II, K Anavas, PHI eastern Economy Edition
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
	2. An advanced course in Practical Physics, D. Chattopadhayay, C.R
	Rakshit, New Central Book Agency Pvt. Ltd
REFERENCE	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
BOOKS	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
	Sons (Asia) Pvt. Ltd.
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing.

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Understand the strength of material using Young's modulus.	K2				
CO2	Acquire knowledge of thermal behaviour of the materials.	K1				
CO3	Understand theoretical principles of magnetism through the experiments.	K2				
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3				
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5				
CO6	Conduct experiments on applications of FET and UJT	K4				
CO7	Analyze various parameters related to operational amplifiers.	K4				
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	К2				
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1				
CO10	Analyze the applications of counters and registers	K4				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

Strong (3) Medium (2) and Low (1)

Elective – I - List 1 – 1. ENERGY PHYSICS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHE1A	ENERGY PHYSICS	DISCIPLINE SPEFIC ELECTIVE	5	-	-	3	5	75

Pre-Requisites

Knowledge of conventional energy resources

Learning Objectives

- > To learn about various renewable energy sources.
- > To know the ways of effectively utilizing the oceanic energy.
- > To study the method of harnessing wind energy and its advantages.
- > To learn the techniques useful for the conversion of biomass into useful energy.
- > To know about utilization of solar energy.

UNITS	Course Details					
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability– prospects of Renewable energy sources– Energy from other sources– chemical energy–Nuclear energy– Energy storage and distribution.					
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power– utilization of tidal energy – Principle of ocean thermal energy conversion systems.					
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.					
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.					
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation- solar cooking-solar greenhouse - Solar pond and its applications.					
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					

	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna
	publishers, New Delhi.
TEXT	2. S. Rao and Dr. ParuLekar, Energy technology.
	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
	4. Solar energy, principles of thermal collection and storage by S. P.
BOOKS	Sukhatme,
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
	5. Energy Technology by S. Rao and Dr. Parulekar.
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and
	Francis group, London and New York.
	2. Applied solar energy, A. B. Meinel and A. P. Meinal
DEFEDENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and
REFERENCE	Francis group, London and New York.
BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S.
	Solanki-PHI Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech
	Publications
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print
	able=1
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
SOURCES	3. <u>https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy</u>
	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/
COURSE OUT	

RSE OUTCOMES

At the end of the course, the student will be able to

CO1	To identify various forms of renewable and non-renewable energy sources	K1					
CO2	Understand the principle of utilizing the oceanic energy and apply it for	K2					
	practical applications.	N2					
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3					
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,					
		K4					
	Understand the components of solar radiation, their measurement and apply	K2,					
CO5	them to utilize solar energy.	K5					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

		/	1						`	/
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Strong (3) Medium (2) and Low (1)

Elective –I- List 1 – MATERIALS SCIENCE | I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHE1B	MATERIALS SCIENCE	DISCIPLINE SPECIFIC ELECTIVE	5	-	-	3	5	75

Pre-Requisites

Basic knowledge on different types of materials

Learning Objectives

- > To gain knowledge on optoelectronic materials
- > To learn about ceramic processing and advanced ceramics
- > To understand the processing and applications of polymeric materials
- > To gain knowledge on the fabrication of composite materials
- > To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
UNIT I: OPTOELECTRONIC MATERIALS	Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission – charge injection, quasi-Fermi levels and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.
UNIT II CERAMIC MATERIALS	Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics
UNIT III POLYMERIC MATERIALS	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers.
UNIT IV COMPOSITE MATERIALS	Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites: fabrication and applications.

UNIT V: NEW MATERIALS	Shape memory alloys: mechanisms of one-way and two-way shape memory effect, reverse transformation, thermo-elasticity and pseudo- elasticity, examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification, size effect on structural and functional properties, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes
--------------------------	---

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							
TEXT BOOKS	 Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007 P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi(For units 2,3,4 and 5) G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill M. Arumugam, 2002, Materials Science, 3rd revised Edition, Anuratha Agencies 							
REFERENCE BOOKS	 B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience and Nanotechnology. Springer- Verlag, 2012. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011. Lawrence H. Van Vlack, 1998. Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of Materials Science, 2nd Edition, Springer. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University Press, 2008. 							
WEB SOURCES	 https://onlinecourses.nptel.ac.in/noc20_mm02/preview https://nptel.ac.in/courses/112104229 https://archive.nptel.ac.in/courses/113/105/113105081 https://nptel.ac.in/courses/113/105/113105025/ https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_M odules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations 							

COURSE OUTCOMES At the end of the course, the student will be able to

CO1	Acquire knowledge on optoelectronic materials	K1
CO2	Be able to prepare ceramic materials	K3
CO3	Be able to understand the processing and applications of polymeric materials	K2,
		К3
CO4	Be aware of the fabrication of composite materials	K5
CO5	Be knowledgeable of shape memory alloys, metallic glasses, and nanomaterials	K1
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Strong (3) Medium (2) and Low (1)

GENERIC COURSE I- WOMEN EMPOWERMENT

	Course Name	C a t	L	Т	Р	0	C r e d i	I n s t H	C	Mark E x	Т
Course Code		e					t	0	I A	t e	o t
Year/ semester		g O					S	u r		r	a
		r						S		n a	1
		У								1	
P23WSG11	WOMEN	GENERIC	Y	Y	-	-	3	5	25	75	100
I YEAR/ I	EMPOWERMENT	COURSE									
SEMESTER	Learning (Dhiectives									
LO1	To know the Course Objectiv	0	rmi	nan	ts o	of wo	omen	Em	powe	rment	
LO2	To learn the various national							-	-		
LO3	To uplift women in socially,			-					-		
LO4	To make aware of women rig			-		•		1			
LO5	To know the women entrepre						lia				
200	Details		P		• 11						
	Details										

Code: P23WSG11-Provided by the Department and Centre for Women's Studies

Unit 1: Fundamentals of Women's Studies - Meaning and Definition of the concept of Women's studies – Need and Scope - Women's studies as an academic discipline -Women's Studies – International Women's Year 1975 - International Women's Decade 1975 - 1985; Towards Equal Status 1976 – Current trends-Importance of women's education –Life Skill Education to build capacity - Education as a tool of Women Empowerment - Obstacles to Women Education – Social, Economic, Cultural and other factors, limitations of Formal system of education.

UNIT II - Issues of Women - Girl Children and Women in Society - Social Networking - Types of Social Networking - impact and consequences of networking - Remedial measures and strategies for solution- NCW: Initiatives to overcome Women's issues - Ministry of Home Affairs and Networking with State Women Commissions: Cyber Crime Prevention against Women and Children (CCPWC)-challenges - Motherhood - Single Parent - Widows – Multiple Roles of Women - Role conflict, Role change - Social Responsibility and Gender Empowerment.

UNIT III - Achievement and Rights of Women- Gender Equality: Achievement of Women -Educational, Political, Economic, Social - Panchayat Raj - Political role and participation - National and International Levels; Women's Rights - Property Rights - Redressal mechanism at different levels - Rights of Women with Disability: Case Studies on Women Achievers in the field of politics, education, arts science, law etc.

UNIT IV - Empowerment of Women- Empowerment of Women: Alternative approaches -Women in Development (WID) - Women and Development (WAD) - Role of Govt. and NGOs -Help line numbers in promoting women's empowerment - National and International Funding Agencies in promoting research on women.

UNIT V - Women Entrepreneurship - Types of Entrepreneurs Opportunities and Risk – Push and Pull Factors –financial Assistance and credit facilities- Micro finance- Entrepreneurship Skill and Competencies - Women Entrepreneurship Development in India: TRYSEM – NABARD – NMEW - Support to STEP – TREAD – Rural Entrepreneurship Development Programme – Gramia Bank –Mahila bank and supportive measures- Industrial Development Bank of India (IDBI) – Small Industries Development Bank of India-SHG and Entrepreneurship opportunities.

	Course Outcomes
Course Outcomes	On completion of this course, students will;
C01	gain knowledge about the concept, need and scope of women's studies.
CO2	acquaint and analyze issues of women in various contexts.
CO3	understand changing role of women in society and issues related to it.
CO4	understand the importance of women's education.
CO5	comprehend the empowerment of women and their achievement.
	Text Books (Latest Editions)
1.	Rani Sandhya, "Development of Women – Issues and Challenges", Discover Publishing House Pvt Ltd, New Delhi, 2012.

(Latest	editions, and the style as given below must be strictly adhered to)
1.	Anil Kumar Jha, "Gender Inequality and Women Empowerment", Axis Books, New Delhi, 2012.
2.	NandalSantosh, "Women and Development", A Mittal Publications, New Delhi, 2012
3.	NandalSantosh, "Women and Development", A Mittal Publications, New Delhi,2012.
4.	RaoPulla, "Political Empowerment of Women in India – Challenges and Strategies", ABD Publishers, New Delhi, 2012.
5.	Jenny Edwards, Andrea Cornwall, et al. "Feminisms, Empowerment and Development: Changing Women"s Lives", Kindle Edition, 2014.
6.	Elson Diane, et al. "Gender Equality and Inclusive Growth: Economic Policies toAchieve Sustainable Development", UN Women, 2019.
7.	Priyanka Sharma Gurnani, "Women Entrepreneurship – Emerging Dimension ofEntrepreneurship in India" Educreation Publishing House, New Delhi, 2016.
	Web sources
1.	https://paradisevalley.libguides.com/the111/theatre_history_websites
2.	https://www.britannica.com/place/England/Performing-arts
3.	https://www.worldhistory.org/Greek_Theatre/
4.	https://archive.org/details/fundamentalsofpl0000dean_y3x3
5.	http://scriptclickcreate.weebly.com/acting.html
6.	https://www.britannica.com/art/theater-building/Production-aspects-of- Expressionist-theatre

References Books

Mapping with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	Μ
CO3	S	S	S	М	S	S	S	М	S	Μ
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Mapping with Programme- Specific Outcomes

M.Sc.	Physics	Syllabus	2023
W1.	1 mysics	Synubus	2023

Semester -II

Core –IV - Paper- 3 - LINEAR AND DIGITAL ICs & APPLICATIONS					SEC	OND	SEM	ESTE
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks

P23PHT23	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core	6	-	-	5	6	75	
----------	--	------	---	---	---	---	---	----	--

Pre-Requisites
Knowledge of semiconductor devices, basic concepts of digital and analog electronics
Learning Objectives
To introduce the basic building blocks of linear integrated circuits.
➤ To teach the linear and non-linear applications of operational amplifiers.
To introduce the theory and applications of PLL.
> To introduce the concepts of waveform generation and introduce one special function ICs.

Exposure to digital IC's

UNITS	Course Details
UNIT I: INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER	Introduction, Classification of IC's, Operational Amplifier: Differential Amplifier, DC and AC analysis of dual input balanced output configuration, dual input unbalanced output. Characteristics of Op-amps, Op-amp block diagram, ideal and practical Op-amp specifications. DC characteristics: Input & output offset voltages & currents, drift. AC characteristics: Frequency response, slew rate, CMRR and PSRR
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and

	applications, Schmitt trigger, PLL - introduction, basic principle, phase
	detector/comparator, voltage controlled oscillator (IC 566), low pass
	filter, monolithic PLL and applications of PLL
	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC
UNIT IV:	Voltage Regulators, IC 723 general purpose regulators, Switching
VOLTAGE	Regulator.
REGULATOR &	D to A AND A to D CONVERTERS: Introduction, basic DAC techniques
D to A AND A to D	-weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D
CONVERTERS	converters -parallel comparator type ADC, counter type ADC, successive
	approximation ADC and dual slope ADC, DAC and ADC Specifications.
	·
	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS
UNIT V:	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-
CMOS LOGIC,	AND-INVERT gates, implementation of any function using CMOS logic.
COMBINATIONAL	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic
CIRCUITS USING	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC
TTL 74XX ICs	7485), Decoder (IC 74138, IC 74154), BCD to
&	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),
SEQUENTIAL	Demultiplexer (IC 74154).
CIRCUITS USING	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,
TTL 74XX ICs	IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit
	asynchronous binary counter (IC 7493).
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	 D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi.
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical
TEXT BOOKS	technology, S. Chand & Co.
	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S.
	Chand & Co, 12th Edition.
	5. V. Vijayendran, 2008, Introduction to Integrated electronics
	(Digital & Analog), S. Viswanathan Printers & Publishers Private
	Ltd, Reprint. V.
	1. Sergio Franco (1997), Design with operational amplifiers and
REFERENCE	analog integrated circuits, McGraw Hill, New Delhi.
BOOKS	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.
	 Malvino and Leach (2005), Digital Principles and Applications 5th
	5. That the und Leader (2005), Digital Timelpies and Applications 5th

	Edition, Tata McGraw Hill, New Delhi
	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson
	Education, New Delhi.
	5. Integrated Electronics, Millman&Halkias, Tata McGraw Hill, 17th
	Reprint (2000)
	6. John F. Wakerly, "Digital Design Principles and Practices", Prentice
	Hall,
	3rd Edition, 2005.
	7. M. Morris Mano, Michael D. Ciletti, "Digital Design", Pearson
	Education/PHI, 3rd Edition, 2008
	1. <u>https://nptel.ac.in/course.html/digital circuits/</u>
	2. <u>https://nptel.ac.in/course.html/electronics/operational amplifier/</u>
	3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-
WEB SOURCES	7/field-effect-controlled-thyristors/
	4. https://www.electrical4u.com/applications-of-op-amp/
	5. https://www.geeksforgeeks.org/digital-electronics-logic-design-
	tutorials/

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Learn about the basic concepts for the circuit configuration for the design of	K1,
	linear integrated circuits and develops skill to solve problems	K5
CO2	Develop skills to design linear and non-linear applications circuits using Op- Amp and design the active filters circuits.	K3
CO3	Gain knowledge about PLL, and develop the skills to design the simple	K1,
	circuits using IC 555 timer and can solve problems related to it.	K3
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential	K1,
	circuits	K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Strong (3) Medium (2) and Low (1)

Paper 4 - QUANTUM MECHANICS – I

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHT24	QUANTUM MECHANICS – I	Core	6	-	-	5	6	75

Pre-Requisites

Newton's laws of motion, Schrodinger's equation, integration, differentiation.

Learning Objectives

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II: ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal

UNIT IV: APPROXIMATIO N METHODS UNIT V:	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator. Eigenvalue spectrum of general angular momentum – Ladder operators and
ANGULAR	their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of
MOMENTUM	wave functions – Construction of wave-functions and Pauli's exclusion principle.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.
REFERENCE BOOKS	 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.
WEB SOURCES	 http://research.chem.psu.edu/lxjgroup/download_files/chem565- c7.pdf http://www.feynmanlectures.caltech.edu/III_20.html <u>http://web.mit.edu/8.05/handouts/jaffe1.pdf</u> https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/ Lecture_ 1.pdf <u>https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf</u>

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5					
CO2	Is able to apply and analyze the Schrodinger equation to solve one	K3,					
	dimensional problems and three dimensional problems	K4					
CO3	Can discuss the various representations, space time symmetries and	K1					
	formulations of time evolution	NI					
CO4	Can formulate and analyze the approximation methods for various	K4,					
	quantum mechanical problems	K5					
CO5	To apply non-commutative algebra for topics such as angular and spin	K3,					
	angular momentum and hence explain spectral line splitting. K4						
K1 - Re	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Strong (3) Medium (2) and Low (1)

Core VI - PRACTICAL II

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHP22	PRACTICAL II - ELECTRONICS	Core	-	-	6	4	6	75

Pre-Requisites

Knowledge and handling of basic electronics experiments of Physics

Learning Objectives

- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

ELECTRONICS

(Any twelve experiments)

- 1. Construction of relaxation oscillator using UJT
- 2. FET CS amplifier- Frequency response, input impedance, output impedance
- 3. Study of important electrical characteristics of IC741.V- I Characteristics of different colours of LED.
- 4. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 5. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 6. Construction of Schmidt triggers circuit using IC 741 for a given hysteresis- application as squarer.
- 7. Construction of square wave Triangular wave generator using IC 741
- 8. Construction of a quadrature wave using IC 324
- 9. Construction of pulse generator using the IC 741 application as frequency divider
- 10. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 11. Study of Binary to Gray and Gray to Binary code conversion.
- 12. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 13. Study of J-K, D and T flip flops using IC 7476/7473
- 14. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 15. Study of Arithmetic logic unit using IC 74181.
- 16. Construction of Encoder and Decoder circuits using ICs.

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad,
TEXT BOOKS	Eastern Economy Edition.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy
	Edition
	1. An advanced course in Practical Physics, D. Chattopadhayay,
	C.R Rakshit, New Central Book Agency Pvt. Ltd
	2. Advanced Practical Physics, S.P Singh, Pragati Prakasan
REFERENCE	3. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley
BOOKS	& Sons (Asia) Pvt. ltd
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi

METHOD OF EVALUATION

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES

At the end of the course the student will be able to

CO1	Understand the strength of material using Young's modulus	K2
CO2	Acquire knowledge of thermal behaviour of the materials	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1
CO5	Improve the analytical and observation ability in Physics Experiments	K4
CO6	Conduct experiments on applications of FET and UJT	K5
CO7	Analyze various parameters related to operational amplifiers	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	К3
CO10	Analyze the applications of counters and registers	K4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Strong (3) Medium (2) and Low (1)

I YEAR – SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHE2A	BIO PHYSICS	DISCIPLINE CENTRIC ELECTIVE	4	-	-	3	4	75

Pre-Requisites
Fundamental concepts of Physics and Biology
Learning Objectives
To understand the physical principles involved in cell function maintenance.

- > To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.
- To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- > To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE AND NEURO BIOPHYISCS	Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels. Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-

							
	macromolecules and proteins – Radiation hazards and protection – use of						
	radiations in cancer.						
UNIT V: PHYSICAL METHODS IN BIOLOGY	Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation, density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.						
UNIT VI:	ert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
	·						
TEXT BOOKS REFERENCE BOOKS	 The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009 Biophysics, P. S. Mishra VK Enterprises, 2010. Biophysics, M. A Subramanian, MJP Publishers, 2005. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008). Essential cell biology by Bruce Albert et al (Garland Science) Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983). 						
	 Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media). Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek 						
WEB SOURCES	 General Bio: <u>http://www.biology.arizona.edu/DEFAULT.html</u> Spectroscopy: <u>http://www.cis.rit.edu/htbooks/nmr/inside.htm</u> Electrophoresis:<u>http://learn.genetics.utah.edu/content/labs/gel/</u> Online biophysics programs: <u>http://mw.concord.org/modeler/</u> <u>https://blanco.biomol.uci.edu/WWWResources.html</u> 						

COURSE OUTCOMES

At the end of the course, the student will be able to

CO1	Understand the structural organization and function of living cells and should	K2,					
	able to apply the cell signaling mechanism and its electrical activities.	K3					
CO2	Comprehension of the role of biomolecular conformation to function.						
CO3	Conceptual understanding of the function of biological membranes and also to	K2,					
	understand the functioning of nervous system.						
CO4	To know the effects of various radiations on living systems and how to prevent	K1,					
	ill effects of radiations.						
CO5	Analyze and interpret data from various techniques viz., spectroscopy,	K4					
	crystallography, chromatography etc.,	174					

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Strong (3) Medium (2) and Low (1)

Elective II - List II – GENERAL RELATIVITY AND	I YEAR – SECOND SEMESTER
COSMOLOGY	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHE2B	GENERAL RELATIVITY AND COSMOLOGY	DISCIPLINE CENTRIC ELECTIVE	4	-	-	3	4	75

	Pre-Requisites				
Skill in mathematics and mechanics					
Learning Objectives					
> To give an introduction to students in the areas of general relativity and cosmology					
UNITS Course Details					

UNITS	Course Details
UNIT I: TENSORS	Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer products - contraction - symmetric and antisymmetric tensors - quotient law - metric tensors - covariant and contravariant tensors - vectors - the tangent space - dual vectors - tensors - tensor products - the Levi-Civita tensor - tensors in Riemann spaces
UNIT I: TENSORS FIELD	Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace operator in general coordinates - covariant derivatives and Christoffel connection - Elasticity: Field tensor - field energy tensor - strain tensor - tensor of elasticity- curvature tensor
UNIT III: GENERAL RELATIVITY	The space time interval - the metric - Lorentz transformations - space-time diagrams - world-lines - proper time - energy-momentum vector - energy-momentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor - the Bianchi identity
UNIT IV: TENSOR IN RELATIVITY	Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of Equivalence - gravitational redshift - gravitation as space-time curvature - the Newtonian limit - physics in curved space-time - Einstein's equations - the Weak Energy Condition - causality - spherical symmetry - the Schwarzschild metric - perihelion precession
UNIT V: COSMOLOGY	Expansion of the Universe - thermal history - and the standard cosmological model - Friedmann - Robertson-Walker type models of the Universe - Primordial inflation and the theory of cosmological fluctuations - Theory and observations of the cosmic microwave background and of the large-scale structure of the Universe - Dark matter and dark energy - theoretical questions and observational evidence - inflation - origin of galaxies and other open problems

UNIT PROFESS COMPO	ONAL Interactions/Visits, Competitive Examinations, Employable and
TEXT BOOKS	 M. R. Spiegel, Vector Analysis, Schaum'a outline series, McGraw Hill, New York, 1974. James Hartle, Gravity: An introduction to Einstein's general relativity, San Francisco, Addison-Wesley, 2002 Sean Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison-Wesley, 2004). Jerzy Plebanski and Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 Meisner, Thorne and Wheeler: Gravitation W. H. Freeman & Co., San Francisco 1973
REFEREN CE BOOKS	 Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and Black Holes, Univ. of Chicago Press. J. V. Narlikar, Introduction to Cosmology, Jones & Bartlett 1983 Steven Weinberg, Gravitation and Cosmology, New York, Wiley, 1972. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 R Adler, M Bazin& M Schiffer, Introduction to General Relativity
WEB SOURCES	 http://www.fulviofrisone.com/attachments/article/486/A%20First%20Course%20I n%20General%20Relativity%20-%20Bernard%20F.Schutz.pdf https://link.springer.com/book/9780387406282 https://ocw.mit.edu/courses/8-962-general-relativity-spring- 2020/resources/lecture-18-cosmology-i/ https://arxiv.org/abs/1806.10122 https://uwaterloo.ca/applied-mathematics/future-undergraduates/what-you-can- learn-applied-mathematics/relativity-and-cosmology

COURSE OUTCOMES

At the end of the course, the student will be able to

CO1	Skillfully handle tensors	K1		
CO2	nderstanding of the underlying theoretical aspects of general relativity and			
002	cosmology	K2		
CO3	Gain knowledge on space time curvature	K1		
CO4 Equipped to take up research in cosmology				
CO5 Confidently solve problems using mathematical skills				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAM OUTCOMES

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

Strong (3) Medium (2) and Low (1)

Provided by the Department of Computer Science

GENERIC COURSE I YEAR – SECON SEMESTER					OND			
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23CSG22	CYBER SECURITY	GENERIC COURSE	4	-	-	3	4	75

Skill Enhancement Course – 1 (SEC-1)	I YEAR – SECOND
	SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
P23PHS21	STRUCTURAL ANALYSIS BY XRD	NME_SKILL ENHANCEMENT COURSE	4	-	-	2	4	75

	Pre-Requisites				
Knowledge	of X-ray, basic concepts of refraction and diffraction				
	Learning Objectives				
\triangleright	To enable the students to acquire knowledge in XRD				
\triangleright	To know the methods in X-Ray Diffraction Method				
\triangleright	At the end of the course, the students will be able to plan experimental				
	projects and execute them.				

UNITS	Course Details
UNIT I: Instrumentation	Principle -Collimator- Monochromators- Detectors
UNIT II: Counter Methods	Geiger-Muller Tube Counter- Proportional Counter-Scintillation Detectors-Solid State Semiconductor Detectors-Semiconductor Detectors
UNIT III: X-Ray Diffraction Methods	Laue's Photographic Method-Transmission Laue Method-Back Reflection Method: Bragg's X, Ray Spectrometer Method, Rotating Crystal Method- Complete Rotation Method-Oscillation Method, Powder Crystal Method

UNIT IV: X-Ray Fluorescence Methods	X-ray Fluorescence Spectrometers-Energy Dispersion Spectrometers-Analytical pplications-X-ray Diffraction-Reciprocal Lattice Concept- Diffraction Patterns- Automatic Diffractometers-Choice X Radiation-Specimen Preparation-X-ray Powder Data file.						
UNIT V: X-Ray diffraction quantitative analysis	Structural Applications-Structural analysis using JCPDS software-Crystal Topography-AUGER Emission Spectroscopy-AES Instrumentation-Quantitative Analysis with AES-Scanning Auger Microprobe(SAM)-Electron Spectroscopy for chemical analysis(ESCA)-Chemical Shift-ESCA Instrumentation-ESCA Electron Analysers – Dectors - Scanning ESCA-Quantitative Analysis.						
TEXT BOOKS	 Willard Merritt, Instrumental Methods of Analysis, CBS publishers & distributors-(1986) B.D. Cullity, Elements of X-Ray Diffraction Hardcover, Pearson Publisher- (2001) Kaimin Shih, X-Ray Diffraction: Structure, Principles & Applications (Materials Science and Technologies), Nova science Publisher-(2013) E.W. Nuffield, X-ray diffraction methods, Wiley-(1967) 						
REFERENCE BOOKS	 <u>Myeongkyu Lee</u>, X-Ray Diffraction for Materials Research From Fundamentals to Applications, Wiley-(2016) Emil Zolotoyabko, Basic Concepts of X-Ray Diffraction, Wiley-(2014) 						
WEB SOURCES	 https://www.twi-global.com/technical-knowledge/faqs/x-ray-diffraction https://imf.ucmerced.edu/sites/imf.ucmerced.edu/files/page/documents/x- ray_powder_diffraction.pdf https://ethz.ch/content/dam/ethz/special-interest/chab/icb/van-bokhoven- group-dam/coursework/Characterization- Techniques/2018/XRD_lecture_AnaBPinar_2017_part_1.pdf https://old.amu.ac.in/emp/studym/100012857.pdf 						

COURSE OUTCOMES

At the end of the course, the student will be able to

CO1	Able to understand the instrumentation of XRD	K2		
CO2	Get knowledge about the Counters	K1		
CO3	Understands the X-Ray diffraction methods	K2		
CO4	Knows how to use XRD analysis	К3		
CO5	Knows where to apply XRD	K1		
K1 - F	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate			

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	3	3	3	2	3	1
CO2	2	2	3	3	3	3	3	3	3	2
CO3	2	2	3	2	3	3	3	2	3	1
CO4	1	3	3	3	3	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	3	2

Strong (3) Medium (2) and Low (1)